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1. Introduction
The electric machine design industry has developed rapidly 
in recent years, in a move largely driven by the electrification 
of transportation in response to environmental and natural 
resource concerns. For electric motor designers this translates 
into a new set of challenges. Motors need to be more efficient and 
more compact, with sufficient output power and torque density 
levels. They should also be designed for mass production, 
especially for aerospace or automotive applications. On top of 
that, motor designs need to be developed in a short timeframe 
and as part of a wider complex system, such as powertrains 
in electrical vehicles. At a motor performance level, motor 
designers need to account for different physical domains that 
interact with each other throughout the design process. To meet 
these challenges many motor designers utilise a systematic 
design optimisation strategy to find optimal design solutions 
to a given set of specified requirements. 

2. Design Optimisation Strategy
A systematic design procedure of electric motors is illustrated 
in Figure 1. The design process starts with an in-depth 
analysis of a given set of requirements with the goal of finding 
a concept design. This initial design is then optimised for 
specific constraints and objectives to determine an optimal 
solution in line with the specification. During this stage, multi-
objective algorithms are required to trade off any conflicting 
performance criteria and make the decision-making process 
easier.

For an efficient design optimisation workflow we need multi-
physics analysis that explores the electromagnetic, thermal 

and mechanical aspects of the motor design and for the 
machine’s performance to be evaluated across the full speed 
range. We also need the ability to explore and leverage a large 
design space, rapidly trade off the machine performance,  
evaluate the impact of any change of specification requirement 
and keep track of design decisions. 

These challenges can be perfectly addressed by integrating 
Ansys Motor-CAD and Ansys optiSLang programs together 
into a unique surrogate model-based optimisation workflow, 
as depicted in Figure 2.

Figure 1: Systematic design procedure of electric motors

.

Figure 2: Surrogate model-based optimisation workflow
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2.1 Surrogate model-based optimsation

Surrogate model-based optimisation strategies typically 
break down into four stages:

In the optiSLang workflow shown in Figure 2, Motor-CAD is 
used for the sensitivity analysis and the validation. Motor-CAD 
is automated through a Python script to set a number of input 
parameters and to run multi-physics calculations. After the 
calculations are completed, relevant output parameters are 
extracted and collected in optiSLang for further analysis. The 
Motor-CAD integration process is summarised in Figure 3.

An example of how this workflow can be used for the design 
optimisation of an electric motor — in this case, a 24-slot 
16-pole IPM traction motor — will now be presented and 
discussed.

3. Preparing for the optimisation
To begin with, this white paper will focus on steps 1 and 
2 of the design flowchart given in Figure 1. Specification 
requirements are first reported and are used both to define 
a concept design and a consistent optimisation scenario. 
This concept design is then parameterised in order to cover a 
sufficiently large design space.

3.1 Specification

For this white paper we use a typical IPM traction motor as 
an example. The requirements of this example motor can 
be seen in Table 1. The peak and continuous performance 
demands across the full operating range, the cooling system 
characteristics, the electrical boundary conditions along with 
the maximum packaging envelope are given. The system is 
cooled with a typical housing water jacket (WJ) using a mixture 
of Ethylene Glycol and Water (EGW) as a coolant.

Figure 3: Motor-CAD integration process

Requirement Value Unit
Peak torque 400 Nm
Peak power @ 3krpm 120 kW
Peak power @ 6krpm 100 kW

Cont. torque @ 1krpm 300 Nm

Cont. torque @ 5krpm 124 Nm
Maximum speed 7000 rpm
Cooling system WJ
Coolant flow rate ≤ 6.5 l/min
Coolant fluid type EGW
Coolant inlet temperature 65 °C
Line current ≤ 500 Arms

DC bus voltage 350 V
Machine diameter 330 mm
Machine length ≤ 220 mm

Table 1: Motor requirements

1.	 Sensitivity analysis: We begin with a design of 
experiment that scans the design space in place to 
extract performance data sets. Extracted data are then 
analysed to evaluate the sensitivity of every output 
parameter to input variable changes.

2.	 Surrogate models: Data from the sensitivity analysis 
are used to build surrogate models that map the 
relationship between design parameters and machine 
performance. For every output parameter the optimal 
subspace is determined along with the impact of the 
main influencers. 

3.	 Optimisation: An optimiser is applied directly to the 
surrogate models with given goals and constraints. If 
the optimisation is multi-objective then the best results 
can be interpreted using a Pareto front that shows how 
the objectives may conflict with each other within the 
solution space.

4.	 Validation: The surrogate model-based optimisation 
results are validated against final FE-based Motor-CAD 
runs.
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3.2 Concept design

A preliminary design analysis in Motor-CAD was carried out 
to establish a number of key parameters like the slot pole 
combination, the stator winding pattern or the geometry of 
the housing cooling channels—the results of which can be 
seen in Figure 4. 

Our concept design is a 24-slot 16-pole machine with one layer 
of magnets embedded into the rotor in a v-shaped manner. 
Typical materials associated with traction applications are 
used: rare-earth based material for the magnets (N38UH) 
and silicon iron based material for the magnetic cores (M235-
35A). The winding is concentrated with two phases per slot 
and six branches in parallel per phase. Finally, the stator 
diameter and mechanical airgap length were fixed to 300mm 
and 1mm respectively. 

3.3 Defining the optimisation scenario

Now that a concept design has been established, the 
optimisation scenario can be defined. The problem is multi-
objective as both the energy consumption through the WLTP-
3 drive cycle and the active machine envelope have to be 
minimised. Figure 5 shows the drive cycle in terms of speed 
vs. time and torque vs. time. 

The problem is also subjected to multiple constraints, as 
shown in Table 2. These constraints are used to capture 
the specified requirements, detailed in Table 1, as well as a 
limitation on the maximum stress allowed in the rotor at high 
speed to avoid mechanical failure. 

Figure 4: Radial machine cross section with winding pattern (left), axial 
machine cross section with housing WJ (right)

Figure 5: WLTP-3 drive cycle – Torque and speed profiles

Constraint Value
Continuous torque (Nm) @ 1krpm ≥ 300
Continuous torque (Nm) @ 5krpm ≥ 124
Peak power (kW) @ 3krpm ≥ 120

Peak power (kW) @ 6krpm ≥ 100

Torque ripples (%) @ 1krpm ≤ 10
Von-Mises stress (MPa) @ 8.4krpm ≤ 300

Table 2: Optimisation constraints
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Table 3 lists the optimisation variables along with their range of 
variation. In Motor-CAD, the parameterisation of the machine 
can be carried out efficiently using a combination of absolute 
parameters, such as magnet thickness, and geometric ratios 
such as split ratio (Figure 6). This sort of parameterisation 
greatly helps both to avoid invalid geometries that may result 
from overlapping regions and explore a large design space. 

Let us say, for example, that we want to explore a significantly 
large sampling of motor configurations with wide ranges of 
stator ID and stator OD values. One should expect a high 
number of invalid geometries as a result, where the stator 
ID exceeds the stator OD. These scenarios are avoided when 
using relevant values of the split ratio.

Parameter Range Unit
Active Length [90; 130] mm
Bridge Thickness [0.4; 1.5] mm
Magnet Post [0.4; 1.5] mm

Magnet Thickness [6; 8.5] mm

Pole Arc Ratio [0.8; 1]
Pole V Angle [90; 120] °
Slot Depth Ratio1 [0.6; 0.75]
Slot Opening Ratio2 [0.2; 0.4]
Tooth Width Ratio3 [0.55; 0.675]
Split Ratio4 [0.65; 0.75]

Table 3: Optimisation variables and design space

1  Slot Depth / (Slot Depth + Stator Back Iron Thickness)
2 Slot Opening Width / Slot Pitch
3 Tooth Width / (Slot Width + Stator Tooth Width)
4  Stator inner diameter (ID) / Stator outer diameter (OD)

Figure 6: Motor-CAD absolute parameters
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4. Applying a surrogate model-based 
optimisation strategy to our example motor
Now, the surrogate model-based optimisation strategy 
described previously can be applied to the IPM traction 
motor parameterised during the preliminary design phase. 
A stepwise description of the design optimisation process is 
given.

4.1 Sensitivity Analysis

The optimisation workflow starts with the sensitivity analysis. 
At this stage the sampling method and the number of 
samples are the only parameters to be set. In this example, 
the Advanced Latin Hypercube Sampling (ALHS) method 
along with 400 samples have been used. This stochastic 
sampling scheme is well suited to high dimensional problems 
with continuous variables and will distribute design variants 
across the design space in an effective way. 

The sensitivity analysis was completed within 2 days using 
a 2-core machine and running 3 instances of Motor-CAD 

in parallel (note that the simulation time can be reduced 
further by utilising more computing resources and further 
parallelisation of the analysis). Performance data sets were 
collected throughout the variation study and post processed 
automatically to characterise the sensitivity of every output 
parameter to the input variables.

The active radial cross section of four design candidates 
can be visualised in Figure 7. As can be seen there is a deep 
exploration of the design space, with the shape of the slots 
and rotor varying significantly from one design to another. 
Performance data sets can be visualised in Ansys optiSLang 
within a single interface, as presented in Table 4, making it 
simple to quickly understand what the most constraining 
parameters are with respect to the optimisation criteria. 

Indeed, from the colour scheme in the results table it is 
possible to see which constraints are fulfilled (highlighted 
in green) and which constraints are violated (highlighted in 
red). In this case, the torque ripples at low speed and the 
continuous torque at low speed that are the most constraining 
parameters. 

Figure 7: Results from the variation study - radial cross section from four designs 
generated out of 400 designs

Table 4: Output data collected in the optiSLang results page
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4.2 Generation of surrogate models

In the next step, a surrogate model for every output parameter 
is automatically generated. Using the Metamodel of Optimal 
Prognosis (MOP) approach, highly accurate models are 
generated with respect to the FE-based sensitivity results. 
On top of accurately capturing the multi-physics behaviour 
of the machine, the MOP provides the optimal subspace for 
each output parameter along with sensitivity measures to the 
most important variables within this subspace. This way the 
parameters that have the highest influence on the machine 
performance can be extracted. 

Since the stress safety factor emerged as a very constraining 
parameter from the sensitivity analysis results, it is used as an 
example. Figure 8 shows this factor plotted against the two 
most important parameters of its optimal subspace, namely 
the split ratio and the pole v angle. From that surrogate model 
we learn that the stress will be higher if we increase the pole 
v angle or increase the rotor size. Modelling this behaviour is 
important both to understand the physics of the machine and 
to confirm that the results we are seeing are as expected from 
a design perspective.

The full model coefficient of prognosis (CoP) is used as a 
forecast quality measure for a given model. For the example 
shown in Figure 8, the CoP has been calculated to be 99%, 
indicating we can move to the optimisation stage with high 
confidence. This value is also given in Figure 9, where the 
impact of the bridge thickness, pole v angle and split ratio 
is characterised through single CoP values. From this plot, 
it is clear that the split ratio has the largest impact on the 
stress safety factor, followed by the pole v angle and bridge 
thickness.

From a design point of view, we would be tempted to choose 
thick rotor bridges to ensure sufficient mechanical integrity. 
However, electromagnetically, it is well known that the 
performance can drop out significantly if these bridges are 
not thin enough and fully saturated. This result can be easily 
retrieved with a back-to-back comparison of the MOPs of the 
peak torque and stress safety factor.

Ansys optiSLang gives the CoPs for all output parameters, as 

shown in Figure 10. This matrix allows us to see the influence 
of different input parameters with respect to the outputs, 
and it is clear that the split ratio and the active length have 
the most important impact on the machine performance. 
Not only the total CoP for the stress safety factor but all CoP 
values approach 1, bringing even higher confidence for the 
upcoming optimisation.

If many motor design trade-offs can be established at this 
stage, the best compromise between all these conflicting 
performance criteria will only be found from an efficient multi-
objective algorithm.

Figure 8: MOP for the stress safety factor

Figure 9: Single CoPs for the stress safety factor

Figure 10: CoP matrix
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4.3 Optimisation algorithm and validation 

A genetic algorithm was then applied directly to the surrogate 
models in order to get solutions to the multi-objective, 
multi-constraint optimisation problem. This results in a two-
dimensional pareto front, highlighted in red in Figure 11. This 
shows the non-dominating solutions with respect to the drive 
cycle efficient and active volume criteria. In Figure 11, designs 
that fulfill the constraints are highlighted in black whereas the 
designs which violate the constraints are shown in light grey. 
Figure 11 also shows some of the metamodel based optimal 
solutions validated with Motor-CAD. 

The constraints have to be validated as well, as shown in Figure 
12 for the specific design n° 9785 which has been taken as an 
example. Moving along the Pareto front we can see how well 
the surrogate model-based optimisation results match the 
validated results with Motor-CAD. This not only allows us to 
find the solution to a complex motor design problem but also 
to validate the effectiveness of the developed optimisation 
strategy.

5. Conclusion
A novel surrogate model-based optimisation workflow using 
Ansys optiSLang and Ansys Motor-CAD has been presented 
and used for the design optimisation of a 24-slot 16-pole IPM 
traction motor. The selected motor topology was optimised 
to provide maximum efficiency over the WLTP-3 drive cycle 
and within the minimum space envelope, while achieving 
specific requirements in terms of electromagnetic, thermal 
and mechanical performance. This cutting edge approach is 
a significant improvement over previous direct optimisation 
strategies and is unprecedented in both academic literature 
on electric machine optimisation and industrial best practice. 
Besides providing optimised solutions to complex multi-
physics, multi-criteria design problems in a computationally 
efficient way and without massive HPC capabilities, this 
optimisation strategy also enables motor designers to 
efficiently trade-off conflicting performance across a large 
design space and keep track of these trade-offs to significantly 
reduce the cost of change throughout the development 
process.

Ansys Motor-CAD is a leading electric motor design tool combining analytical and finite element analysis (FEA) 
methods for fast and accurate performance prediction of electric motors. It enables multi-physics simulation across 
the full operating range. Motor-CAD combined with Ansys optiSLang presents an opportunity for unprecedented 
optimisation strategy, enables system level trade-offs and allows electric motor designers to quickly experiment 
with changes to specification with respect to the design space.

Figure 11: MOP based and validated Pareto front

Figure 12: MOP based vs validated designs constraints for 
design n° 9785
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