Realize Your Product Promise®

ANSYS°

CFD simulation of stirred tank mixing processes using ANSYS

Sravan Kumar Nallamothu

Agenda

- Mixing in process industry
- Mixing Modeling
- Physics in Agitated Vessels
- Modeling tools
- Summary

Mixing in the Chemical Process Industry

- Mixing in agitated vessels is part of the infrastructure of the chemical, petrochemical and biochemical industries
- Need to determine under- or over-mixing of processes
 - Poor mixing leads to waste
- Proper mixing is needed for chemical reaction
 - Fast reactions (rates, selectivity and production) are controlled by the rate of mixing
- Scale-up and scale-down is challenging

Agenda

- Mixing in process industry
- Mixing Modeling
- Physics in Agitated Vessels
- Downstream processes
- Study of Design Space
- Modeling tools
- Summary

Mixing Modeling: CFD Approaches

CFD Modeling Approaches

- 1. Comprehensive model including all physics
 - Computationally expensive
 - Used for new design of equipments
 - Use for in-depth analysis of final design
- 2. Focus only on key physics
 - Widely used method
 - Limit modeling to important physical processes
 - Quick solution for gaining engineering insight

Agenda

- Mixing in process industry
- Mixing Modeling
- Physics in Agitated Vessels
- Downstream processes
- Study of Design Space
- Modeling tools
- Summary

Physics in Agitated Vessels

- Single phase
 - Velocity field prediction
 - Turbulence prediction
 - Turbulence
- Gas liquid flows
 - Bubble size distribution
 - Mass transfer
 - Vortex prediction
- Liquid solid flows
 - Solid suspension
- ANSYS tools can model all above processes individually or in combination

reas **exi**

Physics in Agitated Vessels

- Single phase
 - Velocity field prediction
 - Turbulence prediction
 - Turbulence
- Gas liquid flows
 - Bubble size distribution
 - Mass transfer
 - Vortex prediction
- Liquid solid flows
 - Solid suspension

• ANSYS tools can model all above processes individually or in combination

creasi pon plexi

Single Phase Flow Analysis

Output from single phase simulation?

Case Study 1: Scale up analysis

(Ref: ACS BIOT 2008)

- Objective: Evaluate local energy dissipation rate as scale up criterion for geometrically scaled vessels
- Number of reactors: 4
 - 20, 200, 2000, 20000 liter

Operating Conditions:

- 20Litre reactor is run at 63 rpm
- RPM for other reactor selected such as to obtain same local energy dissipation rate

Baffled vessel with two A315 impellers

Assume
$$\varepsilon \propto \frac{P}{\rho V_{imp}} = \frac{P_o \rho N^3 D^5}{\rho \frac{\pi D^2}{4} D_w} = \frac{P_o N^3 D^5}{\frac{\pi D^2}{4} \alpha D} = \frac{P_o}{\frac{\pi \alpha}{4}} N^3 D^2 \implies \varepsilon \propto N^3 D^2$$

Case Study 1: Simulation Results – Flow and Blend Time

- Types of simulations done
 - Flow
 - Blend Time
 - Exposure Analysis (TDR, Shear Rate)
 - Zonal Residence Time Distribution (RTD)

Power Numbers:				
	20L	200L	2000L	20000L
RPM	63	37.7	22.6	13.6
CFD Upper Po	0.85	0.84	0.83	0.82
CFD Lower Po	0.5	0.49	0.48	0.48

Table 1: Power Number for both impellers

Blend Time				
	20L	200L	2000L	20000L
Blend Time	25.8s	41.9	61.2s	111.8s

Table 2: Blend time for different sizes

Observations:

- Vendor specified "single impeller" power number is 0.75
 - Upper impeller close to that
 - Lower impeller draws lower power
- Blend time increases with scale

Case Study 1: Simulation Results – Exposure Analysis and Zonal RTD

Low intensity at high reactor volumes

Zonal Residence Time Distribution – Similar distribution at different scales

Dissipation Rate Exposure Analysis – Almost Identical environment

Observations:

- Cells/Particles exposure to high shear rate decreases with increase in reactor size
- Dissipation rate profiles are identical
- "Normalized" Zonal Residence Time behaviors similar for all reactor sizes
- At different scale particles/cells will experience similar environment

Example: Fluid flow of shear thinning material in stirred tank

- Venneker et al.²,
 - Flat bottom tank
 - 6 bladed Rushton turbine
 - Full baffled condition
- Mesh
 - Polyhedra cells with boundary layers
- Operating conditions
 - T = 0.627 m
 - 0.1% Blanose
 - K = 13.2e-3, n = 0.85
 - Rotational Speed
 - 3.8 rev/sec
 - Turbulent flow
 - RKE model

Fig. 1 – Geometry of the stirred vessel equipped with a Rushton turbine.

²Bart C.H. Venneker1, Jos J. Derksen2, Harry E.A. Van den Akker, Turbulent, *flow of shear-thinning liquids in stirred tanks—The effects of Reynolds number and flow index*, chemical engineering research and design 88 (2010) 827–843

Case files are available for this study and can be shared

Case setup

• Models

- Realizable K-epsilon with Standard wall functions
 - Enable non-Newtonian turbulent models

/define/models/viscous/turbulence-expert> turb-non-newtonian? Enable turbulence for non-Newtonian fluids? [yes]

- Non-Newtonian Power Law model for viscosity

• Solver settings:

- Second order discretization for momentum
- Second Order for Pressure discretization
- SIMPLE for P-V coupling
- Steady state solver for calculating solution

Flow patterns: Velocity distribution

Center Plane

Impeller Plane

ANSYS

Case files are available for this study and can be shared

Flow patterns: Strain rate & Viscosity

Strain rate distribution

Viscosity distribution

Velocity profile comparison

UCLODER 9, 2018

Physics in Agitated Vessels

- Single phase
 - Velocity field prediction
 - Turbulence prediction
 - Turbulence
- Gas liquid flows
 - Bubble size distribution
 - Mass transfer
 - Vortex prediction
- Liquid solid flows
 - Solid suspension

• ANSYS tools can model all above processes individually or in combination

creasing nplexi

Modeling Approaches: Gas-phase Transport

Gas-liquid Flows: Fermentor Modeling

Challenges

- Prediction of efficient mass transfer
- Gas distribution throughout the tank
- Power draw by impeller for sparging
- Limiting maximum shear rates
- Scale-up process to large reactor

Velocity vectors (left) Gas distribution (right) calculated in a tall fermentor

Gas dispersion by Lightnin CD-6 impeller

Benefits of CAE

- Detailed information for the flow field and shear rate characteristics
- Prediction of gas holdup
- Mass transfer quantities:
 - –Estimation of local and global Kla
 - Interfacial area
- Power dissipation can be obtained to study effect of gas
- Gas distribution thought the vessel
- Simulate different conditions for scale up studies

Case Study 2: Industrial Fermentor Modeling (courtesy Wyeth Vaccines, USA)

• Problem statement:

- Analyze gas sparging in a three impeller bacterial fermentor
- Fermentor details
 - Baffled vessel
 - Partial ring sparger
 - Three impellers
 - Pitched blade turbine acting as sparging impeller
 - Two A315 impellers
- Analysis:
 - CFD simulation models: Velocity field, particle tracking (via the DPM model), Eulerian population balance

Case Study 2: Gas Distribution

- Two A315s are working harmoniously
 - Top impeller discharges into middle impeller suction
- Short circuiting observed near baffles
 - Possible cause complete ring, instead of partial one could resolve channeling

(courtesy of Wyeth USA)

Velocity and gas distribution in the fermentor

Case Study 2: Results - Gas Distribution near the Sparging Impeller

- Gas cavity formation is observed behind RT blades
 - RT is one of the widely used sparging impeller
 - Cavities may exist in wake of any impeller
 - Depends on Gas Flow number and impeller
 Froude number

Ref: Chapter 11, Handbook of Industrial Mixing

Curved Blade RT, an alternative ?

lso-surfaces of gas volume

Gas holdup in stirred gas-liquid tank: Experiment

- Experiments were done by Laakkonen¹
 - Performed CFX simulations as well
- Geometry:
 - Reactor volume: 194 Lit
 - 6 blade Rushton-Turbine
- Operating conditions
 - Angular velocity: 390 rpm
 - Gas flow rate: 0.7 vvm
- Mesh
 - Polyhedra mesh

1. Laakkonen M, Alopaeus V, Aittamaa J. Modelling local bubble size distributions in agitated vessels. Chem Eng Sci. 2007;62;721-740

Case Setup

• Models

- Eulerian multiphase model
- Population balance model for modeling bubble size distribution
 - QMOM method
 - 6 moments
- Ishii-zuber drag model with turbulent drag correction

Solution methods

- Least square cell based gradient method
- First order discretization

Gas volume fraction & bubble diameter

Contours of Diameter (air) (m)

Bubble size distribution on Isosurface of gas volume fraction 10%

Bubble size distribution on planes between baffles

Case files are available for this study and can be shared

Contours of Diameter (air) (m)

Bubble size distribution

390 rpm, 0.7 vvm

Contours of Diameter (air) (m)

Case files are available for this study and can be shared

Gas holdup comparison

28 © 2016 ANSYS, Inc. October 9, 2018

Dissolved Oxygen

Physics in Agitated Vessels

- Single phase
 - Velocity field prediction
 - Turbulence prediction
 - Turbulence

• Gas liquid flows

- Bubble size distribution
- Mass transfer
- Vortex prediction
- Liquid solid flows
 - Solid suspension

• ANSYS tools can model all above processes individually or in combination

creasing nplexi

Geometry

Mixing tank geometry¹:

- Cylindrical tank
- 6 bladed Rushton Turbine impeller
- Mesh: ~400K elements
 - Tetrahedral mesh near the impeller
 - Prism layers in the upper half of the tank

vessel geometry	Rushton turbine ¹⁵
vessel diameter (T)	0.19 m
impeller diameter (D)	0.095 m (T/2)
impeller clearance (C)	0.063 m (T/3)
blade height (b)	0.019 m
blade width (a)	0.023 m
initial liquid height (H)	0.19 m (1 <i>T</i>)

1. Jennifer N. Haque, Tariq Mahmud, Kevin J. Roberts, and Dominic Rhodes, *Modeling Turbulent Flows with Free-Surface in Unbaffled* Agitated Vessels Ind. Eng. Chem. Res., 2006, 45 (8), 2881-2891

Case Setup

• Models

- VOF multiphase model to track the gas-liquid freesurface position
- Realizable k-epsilon model with standard wall functions

Solution Methods

- Transient solver
- PISO for pressure-velocity coupling
- Cell based gradients
- Compressive scheme for volume fraction discretization
- Second order upwind for momentum and turbulence

Results: Volume fraction contour of water on center plane

Case files are available for this study and can be shared

Free surface profile: Comparison

0.25 0.2 0.15 Z-coordiante of free surface 0.1 ▲ Experimental Data ---- Simulation 0.05 0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 Radius

Experimental Data are approximately measured from haque et. al. paper.

Case files are available for this study and can be shared

ANS

Physics in Agitated Vessels

- Single phase
 - Velocity field prediction
 - Turbulence prediction
 - Turbulence
- Gas liquid flows
 - Bubble size distribution
 - Mass transfer
 - Vortex prediction
- Liquid solid flows
 - Solid suspension
- ANSYS tools can model all above processes individually or in combination

ncreasing nplexi

Solid Suspension Modeling

Challenges

- Solid suspension is a key concern for:
 - Solid catalyzed reactions
 - Crystal growth
 - Dissolution
- Uniform solid suspension
- Power prediction with the presence of solids

Solid profile at different agitation speeds. Ref: IchemE, 2008

Benefits of CAE

- Detailed information for the flow field
- Shear rate characteristics
 - Many crystals can be damaged by exposure to regions of high shear
- Predict Just Suspension Velocity
- Predict the solids concentration profile through out the vessel

Iso surface and contours showing solid distribution and cloud height in a conical based vessel

Problem Description

• Reactor details

- Vessel Diameter: 0.61m
- Liquid Level: 0.915m
- Impeller Diameter: 0.2m
- Clearance from Bottom: 0.15m and 0.39 m
- Tank Bottom: Torispherical

Material Properties

- Liquid Density: 1000 kg/m3
- Liquid Viscosity: 0.001 Pa-s
- Solid Density: 2630 kg/m3
- Particle Diameter: 180 micron

Operating Conditions

- Solid Concentration: 10% wt and 15% wt
- Agitation Rate: 150 RPM to 450 RPM in the steps of 50 RPM

Experimental Details from BHR Group, UK

Case setup

• Models

- Eulerian Multiphase model

- Granular secondary phase
- Gidaspow drag model
- Simonin turbulent dispersion model
- Realizable k-epsilon turbulence model
 - Mixture turbulence

Methods

- Node based gradient method
- QUICK discretization method for momentum, volume fraction and turbulence

Effect of Turbulent Dispersion Force

Plot for 10% wt loading

40 © 2016 ANSYS, Inc.

Case files are available for this study and can be shared

Plot for 15% wt Loading

© 2016 ANSYS, Inc. 41

NNSYS

Meshing Guidelines

Mesh

- Hexahedral cells if possible
- Tetra/Polyhedra cells
 - Polyhedra to reduce cell count with minimum/negligible loss of accuracy
- 1-2 cells across impeller blade thickness is preferred
- Boundary layers are needed for laminar flow regime

Agenda

- Mixing in process industry
- Mixing Modeling
- Physics in Agitated Vessels
- Modeling tools
- Summary

Modeling Options

Realize Your Product Promise®

17.0 Release

ANSYS°

MixingWizard

Mixing Wizard

- ACT based customization tool for mixing
 - Automation of
 - Geometry
 - Meshing
 - Solution setup
 - Postprocessing

Select Mixing Analysis Type Configure Mixing Reactor Configure Stirred Tank Reactor Create MRF for Impellers Solution Setup	Tank shape : Cylindrical botto Continuous flow Shaft with type : Impellers : Impeller 1 Type Irrobel : Baffles : Baffles : Sparger S : Sparger Type	Cylindrical ASME10 No Top Mounted 2 4PBT30 4PBT30 0 Yes Flat Yes Ring	
--	---	--	--

No wizard help is available

MixingWizard: Postprocessing

A customized HTML Mixing Report is generated as part of post processing

Tabulated data for several parameters

Torque, power, Froude number etc

Contours

Flow, turbulence, Kolmogorov mixing length

Plots

Blend time, RTD, Exposure

Animation

Blend time

2. User Data

Table 2. Geometry I	nputs								
Tank Details	lipots								
Tank Shape	Diameter	Height	Liquid Level	Bottom Type	Continuous Stirred Tank				
Cylindrical	1.1m	1.3m	1.2m	Flat	No				
Shaft Details									
Diameter	X Offset	Y Offset	Z Offset	Direction	Туре	Shaft Inclined	Inclination Type	Alpha Angle	Beta Angle
0.035m	0m	0m	0.4m	Clockwise	Top Mounted	Yes	User Defined	Odegree	Odegree
Impeller Details									
Diameter	Z-Offset Type	Z Offset	Angular Offset	Туре	Create Type	Pumping Direction			
0.45m	User Defined	0.4m	Odegree	Create Impeller	6RBT	Downward			
Baffle Details									
Number of Baffles	Z Offset	Clearance from Wall	Height	Angular Offset (Anticlockwise)	Туре	Width	Thickness		
4.000e+00	0.3m	0.02m	1.05m	Odegree	Flat	0.1m	0.01m		
Monitors Details									
Monitor Definition									
Automatic									
Feeds Details									
Feed Definition									

Mixing Report

· undbic					
	Impeller 1				
Angurlar Velocity (RPM)	200.00				
Tip Speed	4.71 [m s^-1]				
Reynold's Number	703757.00				
Torque [N-m]	117.30 [J]				
Power	2456.64 [W]				
Power Number	3.60				
Froude Number	0.51				
Overall Quantities					
Total Power	2456.640 [W]				
Power/Volume	2169.730 [W m^-3]				
Average Strain Rate	11.578 [s^-1]				
Average Eddy Dissipation Rate	1.747 [m^2 s^-3]				
Average Kolmogorov Mixing Length	4.402e-05 [m]				
Average Micromixing Time Scale	0.036 [s]				
Average Mesomixing Time Scale	0.147 [s]				

Contours of flow variables

L'S

MixingWizard: Postprocessing

Quantitative Data

Mixing Tank Quantitative Data					
Variable	Value				
	Impeller 1				
Angurlar Velocity (RPM)	200.00				
Tip Speed	4.71 [m s^-1]				
Reynold's Number	703757.00				
Torque [N-m]	117.30 [J]				
Power	2456.64 [W]				
Power Number	3.60				
Froude Number	0.51				
Overall Quantities					
Total Power	2456.640 [W]				
Power/Volume	2169.730 [W m^-3]				
Average Strain Rate	11.578 [s^-1]				
Average Eddy Dissipation Rate	1.747 [m^2 s^-3]				
Average Kolmogorov Mixing Length	4.402e-05 [m]				
Average Micromixing Time Scale	0.036 [s]				
Average Mesomixing Time Scale	0.147 [s]				

Table 3. Mixing Tank Quantitative Data

Blend Animation

Time = 0.24 [s]

Agenda

- Mixing in process industry
- Mixing Modeling
- Physics in Agitated Vessels
- Downstream processes
- Study of Design Space
- Modeling tools
- Summary

Summary

• Simulation with CFD

- is now an established method in process design.
- helps planning and reducing experimentation and provides physical insight about particular behavior.
- allows for the evaluation of new equipment prior to purchase.
- ANSYS tools can simulate the physical processes that need to be understood for process improvement, scale-up and design
- Advancements in interface design and solver technology are minimizing the knowledge/experience required to benefit from CFD.
- Mixing Wizard is a tool designed to provide automated workflows and results generation
- Different levels of simulation (single-phase, multi-phase, etc.) can be simulated based on required accuracy and insights needed into the physical process.