The construction industry is facing several challenges and drivers: access to qualified labour, rising material cost and margin squeeze are just a few.
Through the power of modelling and simulation, we can now significantly reduce the expense and time spent on developing and testing new drugs and medical devices.
High-tech is part of our daily lives, so much so that we take it for granted. We use mobile phones that are more powerful than the technology used to land a man on the Moon.
As every machine becomes connected to collect and transmit data, it’s important to know how to turn this opportunity into real value for your company and your customers.
We craft ships, a complex combination of technological systems, which must safely operate in a very hostile environment, keeping their precious cargo of people or goods safe.
Today, simulation software enables companies to optimize electric and hybrid vehicles, ADAS systems, and self-driving cars by exploring uncharted territories.
With Ansys Battery Simulation, you can achieve better performance, longer battery life, and reduced costs while accelerating the product development process.
One of the key applications of Fluent is in the field of combustion modelling, where it is used to model and optimize the combustion processes in various industries.
Heat exchangers have been used for many years in different applications. Typically we find them in HVAC, refrigeration, power generation, and chemical processing.
The mixing process is an integral component of the process industry, with a wide range of applications utilized to create tailored products that meet the diverse needs of various industries and customers.
Ansys Rotating Machinery application provides advanced software that assists in the design of various types of rotating machinery equipment and enables rapid iteration and improvement of designs.
The energy landscape of our world is currently undergoing a major transformation, towards more sustainable and environmentally-friendly energy sources.
With Neural Concept, design and verification workflow can be improved at least 2-10 times by training a Neural Network with existing data for designs and simulations.
Computational Fluid Dynamics (CFD) simulation products are for engineers who needs to make better and faster decisions and can help reducing the development time and efforts while improving your product’s performance and safety.
Materials information is crucial in engineering and manufacturing as it enables informed decisions. In simulation and modeling, precise materials data is needed to accurately predict real-world behaviour.
Ansys offers structural analysis software solutions that enable engineers of all levels and backgrounds to solve complex structural engineering problems faster and more efficiently.
As supplier of Digital Lab solutions it is natural for us to maintain a strong connection with academic institutions, students, teachers and researchers across the world.
Ansys Startup Program, provided by EDRMedeso, gives you full access to simulation software bundles that are built and priced to help entrepreneurs grow their business quickly and cost-effectively.
All our services are designed to help our clients increase their competitive edge, reach their sustainability goals, and leverage cutting-edge technologies.
Since day one, our customers have been at the centre of our focus. Whether we’re taking care of our existing users or onboarding new customers into our yearly care cycle – quite simply – nothing is more important to us than you, our customer.
At EDRMedeso you learn from some of the industries top experts in their respective fields. With over 1500 collective years of experience in simulation, we provide a host of training sessions to suit your organizations needs
At EDRMedeso, we want to help you in innovating the future. Here you’ll find our upcoming webinars, events, trade shows and seminars, designed to help you maximize your engineering potential.
The only forum for executives and thought leaders to discuss and share cutting edge technology strategies designed to win in the rapidly changing environment!
Ansys blog – Bianchi Takes the Yellow Jersey with Simulation
Share
If you’ve ever watched the Tour de France, you may have wondered just how fast those riders actually go. Naturally, having the right bike is a good start. But what does the right tour bike look like? You might want to ask Bianchi. The Italian bike manufacturer’s team is a force in both the race and the sport. Their riders (and bikes) are some of the best in the world, having enjoyed numerous victories finishing in the top spots.
One of the oldest and biggest names in cycling, Bianchi recently began using Ansys software in 2020 on its continued quest to build world-class tour bikes, as well as mountain bikes and e-bikes. In this context, “passing the test” for Bianchi means finding the right stiffness, aerodynamics, and performance in a safe, ISO-compliant frame design enabled by Ansys simulation.
“Our mission is to deliver the best bike in the world,” says Daniel Teran, Product Manager and Design Engineer at Bianchi. “Our analysis depends on what the customer needs. So, if the customer needs performance, then it’s performance. If the customer needs a tour bike, then it should be the best tour bike in the world in terms of comfort or geometry or whatever is needed for that type of bike, which is only achieved by simulation.”
A 70% Reduction in Physical Prototypes Helps Drop the Competition
Bianchi’s core business is producing bicycles for high-performance targets. In this case, the user is a road biker who looks for high-performance bikes with a focus on frame stiffness, weight, and aerodynamics.
“The pressures for touring bike design are tied to the competitive nature of road racing,” says Teran. “The focus is always on designing a lighter, stiffer, faster bike. Those are the three big words in cycling and the biggest engineering challenges we face.”
To this end, Ansys Mechanical structural finite element analysis (FEA) software enables Bianchi to simulate viable design solutions in two to three tries, ultimately reducing the number of prototypes needed for safety testing by 70%. This methodology applies to every frame variation they plan to put on the market. A physical sample of every bike is tested, and if a particular sample does not pass, a second, third, or fourth sample is made until all of the necessary modifications have been completed.
Bianchi uses Ansys Mechanical to develop and optimize its bike frames as pictured above, from composites materials modeling (left) to structural performance testing for stiffness (right).
“We need three prototypes for every size bike we make,” says Teran. “In the past we made basically four modifications to get an acceptable result. With simulation, we know what we have to modify if the frame is not passing, then immediately move on to solve issues. So, most of our frames pass the first time, or in the worst-case scenario, the second. When you’re talking about three separate fatigue tests and two separate impact tests involving two frames, plus one as back-up, the savings can add up to anywhere from thousands to tens of thousands of dollars.”
Overall, Bianchi saves approximately 18 months across the entire development chain using simulation software, from initial design to testing and optimization. Going to market earlier means more sales and a greater competitive advantage in an environment characterized by constant change.
Simulation Puts Riders In the Best Position
Performance optimization of Bianchi’s racing bikes begins well before race day with Ansys Fluent. First, Bianchi engineers study the frameset (frame, seat-post, handlebar, and fork) with dummy components such as wheels and cranks to understand the general behaviour of the sections. In parallel, a 3D scan of the rider’s body is used to obtain a polygonal model, which is imported into Ansys SpaceClaim to generate a clean 3D model for further analysis using Fluent.
In this way, Bianchi can study the behaviour of the new bike, including the presence of the rider. From this series of simulations, the team can further optimize the frame design to find that sweet spot where the frame works in harmony with the rider’s volume for reducing drag force across different yaw angles (the angle between a cyclist’s direction of motion and the relative wind vector, which is a combination of rider speed and ambient wind direction).
Bianchi uses Ansys Fluent computational fluid dynamics software to do path lines analysis of traditional handlebars (top, right) versus its OltreZero handlebars (bottom, right).
All of this information leads to extremely accurate power and performance predictions by riders for a specific time trial or stage. This level of optimization is something that Bianchi does with their own racing team. Using analysis, models are created that achieve certain characteristics in an effort to help match a rider with the proper bike or find a better one.
“It’s really good to have everything integrated that you are actually using — to have the model in one place using different types of simulations,” says Teran. “I think that is the key point of analysis. And then all the optimization tools that you have in Ansys Workbench, including the ability to update all design points, and then you let it run.”
Gearing Up for Safety with Ansys LS-DYNA
Competitive cycling can be dangerous. During the Tour de France, for example, riders can reach speeds of up to 65 mph (approximately 110 kph) on the downhill,1 making sudden stops potentially perilous. And, as more consumers look to biking as an eco-friendly way to get around, the increase in bike traffic, along with interactions with motor vehicles, pedestrians, and anything else on the path from point A to point B, increase the potential for more accidents.
Working toward higher safety standards for all of their bikes is a priority for Bianchi. To do this, the development team looks to ISO standards as a baseline and then go a bit beyond the typical usage of the bike during safety testing in Ansys LS-DYNA crash test simulation software. Much of the focus is on overall design integrity, as even professional touring bikes are susceptible to damage in certain environments. Then there are components where zero failure is critical, like the fork, or the part of the bike that holds the front wheel.
Fatigue testing using simulation to determine the integrity of the saddle design.
For example, the development team uses LS-DYNA to understand how much energy is absorbed by the front and rear wheels versus the A-frame during a front-end or rear-end collision. Separate analysis in LS-DYNA helped the team understand the level of stress on these individual components versus the combination of the two working together relative to the same amount of energy. In this way, the team can carefully tweak the heights of the drop test done in Bianchi’s Labs to improve safety during impact.
Riding High on New Discoveries
Perhaps the best benefit of using Ansys simulation software was the unexpected discoveries that led Bianchi’s development team to a better assessment of frame stiffness. There is a myth in the cycling industry that of all the elements of the frame, the down tube, or the long tube that runs from head tube down to the pedals needs to be really large to withstand torsional loads. Discoveries made within a simulation environment, however, led Teran to a different conclusion.
“Stiffness really depends on the geometrical harmony between all the tubes of the frame,” says Teran. “Previously, we overlooked the top tube when considering the stiffness of the frame, when actually it is also very important. It’s not just the down tube, which was a great discovery turned competitive advantage for us. We also made new discoveries related to the parts of the frame that influence aerodynamic performance. This has led to further optimization of the seat tube and seat post giving us a really good design performance, which, if not optimized for aero, also contributes to a big portion of the frame drag force.”