The construction industry is facing several challenges and drivers: access to qualified labour, rising material cost and margin squeeze are just a few.
Through the power of modelling and simulation, we can now significantly reduce the expense and time spent on developing and testing new drugs and medical devices.
High-tech is part of our daily lives, so much so that we take it for granted. We use mobile phones that are more powerful than the technology used to land a man on the Moon.
As every machine becomes connected to collect and transmit data, it’s important to know how to turn this opportunity into real value for your company and your customers.
We craft ships, a complex combination of technological systems, which must safely operate in a very hostile environment, keeping their precious cargo of people or goods safe.
Today, simulation software enables companies to optimize electric and hybrid vehicles, ADAS systems, and self-driving cars by exploring uncharted territories.
With Ansys Battery Simulation, you can achieve better performance, longer battery life, and reduced costs while accelerating the product development process.
One of the key applications of Fluent is in the field of combustion modelling, where it is used to model and optimize the combustion processes in various industries.
Heat exchangers have been used for many years in different applications. Typically we find them in HVAC, refrigeration, power generation, and chemical processing.
The mixing process is an integral component of the process industry, with a wide range of applications utilized to create tailored products that meet the diverse needs of various industries and customers.
Ansys Rotating Machinery application provides advanced software that assists in the design of various types of rotating machinery equipment and enables rapid iteration and improvement of designs.
The energy landscape of our world is currently undergoing a major transformation, towards more sustainable and environmentally-friendly energy sources.
With Neural Concept, design and verification workflow can be improved at least 2-10 times by training a Neural Network with existing data for designs and simulations.
Computational Fluid Dynamics (CFD) simulation products are for engineers who needs to make better and faster decisions and can help reducing the development time and efforts while improving your product’s performance and safety.
Materials information is crucial in engineering and manufacturing as it enables informed decisions. In simulation and modeling, precise materials data is needed to accurately predict real-world behaviour.
Ansys offers structural analysis software solutions that enable engineers of all levels and backgrounds to solve complex structural engineering problems faster and more efficiently.
As supplier of Digital Lab solutions it is natural for us to maintain a strong connection with academic institutions, students, teachers and researchers across the world.
Ansys Startup Program, provided by EDRMedeso, gives you full access to simulation software bundles that are built and priced to help entrepreneurs grow their business quickly and cost-effectively.
All our services are designed to help our clients increase their competitive edge, reach their sustainability goals, and leverage cutting-edge technologies.
Since day one, our customers have been at the centre of our focus. Whether we’re taking care of our existing users or onboarding new customers into our yearly care cycle – quite simply – nothing is more important to us than you, our customer.
At EDRMedeso you learn from some of the industries top experts in their respective fields. With over 1500 collective years of experience in simulation, we provide a host of training sessions to suit your organizations needs
At EDRMedeso, we want to help you in innovating the future. Here you’ll find our upcoming webinars, events, trade shows and seminars, designed to help you maximize your engineering potential.
The only forum for executives and thought leaders to discuss and share cutting edge technology strategies designed to win in the rapidly changing environment!
Apply Robustness in Design to Overcome Uncertainty in Manufacturing
Share
Committing to a methodology that supports the selection of an optimal design improves the quality of the end product. Engineering teams tend to over- or under-qualify their designs because they’re not exactly sure what tolerance they need. Usually, that results in excess materials, cost, and time. Most engineers are familiar with optimization techniques, but robustness evaluation takes that a step further to show proof of quality.
Robustness in Electronics Design and Manufacturing
It’s no secret that manufacturing single electronic components produces deviations, and the assembly process can cause inconsistencies. That’s why we have guidelines like Six Sigma. The Six Sigma level of quality requires that a manufacturing process can produce products with no more than 3.4 defects per million. Six Sigma, otherwise known as robust design, encourages engineers to design products that are less sensitive to variation in manufacturing.
As electronic systems and components become smaller, higher in density, and more susceptible to heat, there are more unexpected interactions to account for, and it’s harder to predict how tolerances will impact design and manufacturing. By figuring out which production tolerances must be observed to ensure consistent quality, engineers reduce costs and defects, improve quality, and simplify workflows.
Picture: A production line worker in factory that produces electronics
The process of assessing robustness involves:
Identifying the stochastic parameters during the manufacturing phase that can produce uncertainty and impact the quality of the final product, such as random environment variables or materials properties.
Injecting statistical data from manufacturing as probabilities in the simulation models for uncertainty quantification and prediction of the relative impact of those parameters.
Using artificial intelligence/machine learning (AI/ML) algorithms to iterate on the design and find optimal values with automated and systematic simulation processes.
Many companies use Ansys optiSLang for optimization, but here’s how some of them are using it to prove or improve the robustness of their designs and end products.
Cost and Function Optimization for Automatic Transmissions
One major challenge in product design is identifying an optimal combination of function and cost; however, there are many approaches to accomplishing that, and each requires a different commitment in terms of development scope.
A global automotive manufacturer experienced this firsthand when comparing and evaluating design variants for the solenoids in their automatic transmission device design. The company used optiSLang and Ansys Workbench to establish a computer-aided simulation methodology that considered materials, tolerances, component topologies, geometric parameters, and manufacturing processes. This workflow generated a variety of solenoid designs in a short time with cost versus function optimization for each. By understanding the relationship between technical function and economics for each option, the team was able to select the most robust design.
Modeling Calibration for Film Copper
Thin-film copper is common in the semiconductor industry due to its electrical and thermal conductivity characteristics. The function of a semiconductor depends on the performance of this metal under a wide range of temperatures. Typically, metallic thin film has different physical characteristics than bulk solids of the same material, so it behaves differently. To understand the stress-strain response of their thin-film copper and compare their reference experiment with simulated results, a semiconductor manufacturer used optiSLang to identify the correct material model to use.
Picture: A technician holds a semiconductor wafer at a manufacturing plant
“Manual” validation would take about three weeks to run 70 simulations, but after setting up the methodology, optiSLang ran 284 simulations in one day. The most time-consuming part of the process wasn’t the actual runtime; it was the analysis and decision-making around parameter changes that might lead to a better calibration with experimental results. optiSLang helped improve the quality and efficiency of the procedural results.
Manufacturing Device Optimization
One company’s lightweight design of a lathe chuck supports maximum load capacity for customers looking for fast and efficient component production. Combining topology optimization (to identify the lightest suitable design) with parameter optimization (for the longest possible chuck life) created this robust result.
Multi-objective optimization with optiSLang revealed an optimal design with 30% less mass and 40% mass inertia.
Optimizing parameters in the jaw guidance area increased stiffness, improving the chuck’s core clamping function.
Finite element parameter optimization for reduced notch stresses and highest possible stiffness given constraints for lathe chuck.
Picture: Finite element parameter optimization for reduced notch stresses and highest possible stiffness given constraints for lathe chuck
Validation of ADAS Using Reliability Analysis Methods with Mercedes-Benz
Advanced driver-assistance systems (ADAS) help with emerging vehicle functions like automatic emergency braking, pedestrian detection, parking assist, and gaze detection. These systems are becoming increasingly complex as they assume more functions, so it’s more challenging to validate their safety. The mileage needed to assess the probability of system failure in field tests is practically impossible to achieve, so automaker Mercedes-Benz AG turned to simulation to identify critical traffic scenarios for safety function testing and evaluation using optiSLang.
Picture: A Mercedes-Benz cut-in scenario, with parameters of interest noted in the simulation environment
This method reduced the number of concrete traffic scenarios needed to prove a particular function and determine the risk per scenario in a fraction of the time. Mercedes-Benz AG was able to use this approach and their simulation results in their level-three ADAS certification proposal, which indicates qualifications for the design’s environmental detection capabilities.
Another use case of optiSLang includes planning and developing tolerance concepts for car manufacturing. In the automotive space, preparing for tolerance analysis is time consuming and sometimes fault prone, especially for body-in-white (BiW) structures, which consist of several hundred parts. At this stage of manufacturing, the car’s frame is assembled, but it’s unpainted.
For accurate tolerance analysis modeling and manufacturability, engineers need specific information (e.g., fixture concepts and joining locations) to define contact conditions, ranges, and measurements using simulation software. In practice, tolerance information for single parts, which is created during the product development process, is transferred to the simulation model along with tolerances for the manufacturing process and simulation parameters. optiSLang accommodates tolerance ranges, so it’s easy to consider multiple input variables in a tolerance sensitivity analysis to ensure a robust assembly.