The construction industry is facing several challenges and drivers: access to qualified labour, rising material cost and margin squeeze are just a few.
Through the power of modelling and simulation, we can now significantly reduce the expense and time spent on developing and testing new drugs and medical devices.
High-tech is part of our daily lives, so much so that we take it for granted. We use mobile phones that are more powerful than the technology used to land a man on the Moon.
As every machine becomes connected to collect and transmit data, it’s important to know how to turn this opportunity into real value for your company and your customers.
We craft ships, a complex combination of technological systems, which must safely operate in a very hostile environment, keeping their precious cargo of people or goods safe.
Today, simulation software enables companies to optimize electric and hybrid vehicles, ADAS systems, and self-driving cars by exploring uncharted territories.
With Ansys Battery Simulation, you can achieve better performance, longer battery life, and reduced costs while accelerating the product development process.
One of the key applications of Fluent is in the field of combustion modelling, where it is used to model and optimize the combustion processes in various industries.
Heat exchangers have been used for many years in different applications. Typically we find them in HVAC, refrigeration, power generation, and chemical processing.
The mixing process is an integral component of the process industry, with a wide range of applications utilized to create tailored products that meet the diverse needs of various industries and customers.
Ansys Rotating Machinery application provides advanced software that assists in the design of various types of rotating machinery equipment and enables rapid iteration and improvement of designs.
The energy landscape of our world is currently undergoing a major transformation, towards more sustainable and environmentally-friendly energy sources.
With Neural Concept, design and verification workflow can be improved at least 2-10 times by training a Neural Network with existing data for designs and simulations.
Computational Fluid Dynamics (CFD) simulation products are for engineers who needs to make better and faster decisions and can help reducing the development time and efforts while improving your product’s performance and safety.
Materials information is crucial in engineering and manufacturing as it enables informed decisions. In simulation and modeling, precise materials data is needed to accurately predict real-world behaviour.
Ansys offers structural analysis software solutions that enable engineers of all levels and backgrounds to solve complex structural engineering problems faster and more efficiently.
As supplier of Digital Lab solutions it is natural for us to maintain a strong connection with academic institutions, students, teachers and researchers across the world.
Ansys Startup Program, provided by EDRMedeso, gives you full access to simulation software bundles that are built and priced to help entrepreneurs grow their business quickly and cost-effectively.
All our services are designed to help our clients increase their competitive edge, reach their sustainability goals, and leverage cutting-edge technologies.
Since day one, our customers have been at the centre of our focus. Whether we’re taking care of our existing users or onboarding new customers into our yearly care cycle – quite simply – nothing is more important to us than you, our customer.
At EDRMedeso you learn from some of the industries top experts in their respective fields. With over 1500 collective years of experience in simulation, we provide a host of training sessions to suit your organizations needs
At EDRMedeso, we want to help you in innovating the future. Here you’ll find our upcoming webinars, events, trade shows and seminars, designed to help you maximize your engineering potential.
The only forum for executives and thought leaders to discuss and share cutting edge technology strategies designed to win in the rapidly changing environment!
Optimize 5G Antenna Design and Solve Large Communication Challenges with Ansys HFSS
Share
A surgeon in Boston connects with a surgeon in Bangalore to help guide him through a life-saving surgery as it is happening in real time. A self-driving vehicle suddenly brakes in anticipation of what the driver cannot see just around the next corner. These are just two of the many possibilities 5G brings into our connected lives.
The Evolution of Antenna Technology
Antenna technology has taken a giant leap from 4G to 5G to accommodate higher-frequency applications delivering greater bandwidth. In 4G, a traditional antenna receives energy from all directions and is not particularly discriminating. A lot of antennas on existing 4G handsets, for example, are omni directional. A 4G antenna operates at lower frequencies (6 GHz) that can diffract or bend around objects and be picked up very easily.
By using a beamforming method (putting two or more of these antennas together to form an array and adjusting the signal in such a way that they are coherent), it is possible to direct the incoming energy and beam it in a particular direction. In addition to beamforming, 5G also uses a specialized signal processing method called multi-in multi-out (MIMO) that leverages the antenna array to maximize bandwidth and the number of users in a particular vicinity. Both beamforming and MIMO techniques are used to maximize the scale and performance of cellular networks.
5G operates at 4G frequencies but also at higher frequencies than 4G. It uses the millimeter wave (mmWave) band of spectrum, which supports faster data rates, but is more easily blocked by obstructions. As a result, 5G uses phased array antenna beamforming to direct the communication between the base station and the handset. Using phased array antennas creates new opportunities and challenges to excite the individual antenna elements that are part of the array.
One of the baseline challenges for building 5G antenna arrays is their higher frequency. The higher the frequency, the shorter the wavelength, and the shorter the wavelength, the smaller the individual antenna or antenna elements. The antenna elements that make up a 5G phased array antenna are incredibly small, yet they comprise a significant fraction of the entire array design.
In a handheld device, such as a phone, there are also thermal and mechanical challenges at play. As a 5G device handset warms up during usage, power and heat affect the radio circuits. Any dimensional changes, whether caused by design or by heat given off by a particular device, can change these elements’ resonant frequency causing a reduction in performance.
Ansys HFSS 3D enables layout-driven assembly workflows.
Optimizing 5G Antenna Design with HFSS
A 3D component arrays simulation
Using Ansys HFSS, engineers can design phased antenna arrays and optimize antenna properties for end-to-end channel modeling, as well as communication and coupling between individual elements. For example, HFSS 3D Comp Array Technology helps engineers to cut through the complexities of 5G mmWave antenna design with sophisticated solver technology. It’s a multipurpose, full wave 3D electromagnetic (EM) simulation software for designing and simulating high-frequency electronics — from antennas and antenna arrays to radio frequency (RF) or microwave components, high-speed interconnects, filters, connectors, integrated circuit (IC) packages and print circuit boards.
Using HFSS SBR+, engineers can quickly solve electrically large problems associated with 5G antenna design, drawing on its ability to compute installed antenna performance, extended near-field distributions, far-field radiation patterns, antenna-to-antenna coupling, radar cross section, and radar returns from full-scale scenes. HFSS can also be used to accurately answer antenna placement questions through simulation.
“HFSS is an extremely reliable simulation that can zero in on antenna performance for a particular 5G application,” says Larry Williams, Ph.D., a distinguished engineer and thought leader at Ansys. “It has an adaptive process that continuously refines the finite element mesh until it finds a solution that is deterministically accurate. The software also finds its versatility in an SBR+ solver and other solvers, with the ability to address much bigger challenges, like the radiation of an antenna mounted on an aircraft.”
A 3D component arrays simulation
Complex 5G Systems Require Collaboration
Cell phone design is based on input from multiple engineers. Using HFSS supports a more collaborative workflow necessary to address an antenna array functioning within the context of these devices. Consider a 5G cell phone as it communicates to a cell tower. Using continuous signal processing, it is repeatedly adjusting itself to send energy toward that tower. There’s energy to consider, and signal processing involved. Because 5G also applies MIMO, there’s more to control over a multitude of signal paths. Traditionally different teams are assigned to address these issues in antenna design, signal processing and industrial design. It’s a scenario that can often lead to siloed teams struggling to meet deadlines, and track and maintain certification documentation. HFSS helps track and share accurate component design data among engineering groups, resulting in more productive collaboration across workflows.
5G supports many innovations, including connected vehicles.
Embedded within a cell phone are multiple antennas, no bigger than the size of a dime integrated into tiny modules, including a radio and a phased array antenna, and some of the analog signal processing hardware. All come together to form a single integrated circuit package to manage these circuit paths. With so many antennas on a single device, figuring out antenna placement becomes very important. Invariably your device not only provides 5G, it also provides 4G with a different band and different antennas, along with Wi-Fi and Bluetooth, all coupling to each other. To address these complexities requires model sharing and design collaboration among teams to successfully simulate and design individual components into high-frequency networks.
Optimizing speed with Ansys HFSS regions in Ansys SIwave.
HFSS helps you bring these inputs together from start to finish, from the initial import of the chassis from a computer-aided design (CAD) file, to the scripting and automation of that process to clean up the geometry. Using Ansys SpaceClaim, the engineer could then place antennas around that chassis and run simulations, then optimize the design and antenna performance. HFSS simulation software can also be used for coupling beam design to understand how these antennas interact with each other on a single platform, analyze RF signal processing or identify disruptions between antennas as part of a collaborative workflow.
Engineers are using HFSS to solve some of the biggest challenges in 5G antenna design. Read on to learn more about this best-in-class 3D high-frequency electromagnetic simulation software.