Space Forge Embarks on In-Orbit Manufacturing

Engineers at Space Forge, a manufacturing company based in the United Kingdom, are sending robots into orbit to assemble ordinary material in extraordinary ways on returnable satellites.

As a member of the Ansys Startup Program, the small-but-mighty team is employing Ansys 'simulation solutions to facilitate these two-way trips to space as safely and as efficiently as possible.

Imagine building a product from scratch without gravity, buoyancy, or other earthly hinderances. Think about constructing the most sensitive inner workings of a superconducting device without worry of contamination. Dream of manufacturing in an environment where nothing can compromise the integrity of your product. These suggestions may seem a bit out there — because they are. In fact, they start about 500 kilometers — or roughly 300 miles — above the Earth’s surface in the beginning of the exosphere where astronauts aren’t the only visionaries turning far-out fantasies into realities.

Launching Space Forge with Ansys

Early concepts for Space Forge began in 2018 when Andrew Bacon, an aerospace engineer, and Joshua Western, a satellite sales executive, recognized the potential of in-orbit manufacturing followed by return to Earth. But they knew they would need to create safer and lower-cost reentry technology to make it happen. With an official company launch slated for March 2020 and having just quit their day jobs, it was less than ideal when the coronavirus pandemic sent most of the world into lockdown. Still, as its name suggests, Space Forge was prepared to forge ahead. The dynamic duo used the time in isolation — largely spent connecting virtually from a garage — to strategize business plans and get things off the ground, literally. Space Forge became a member of the Ansys Startup Program in early 2021 via Ansys’ UK Elite Channel Partner, EDRMedeso. The program encourages early-stage startups by offering affordable access to Ansys’ simulation solutions, including technical support for additional assistance. By April 2021, Bacon and Western secured their first office space in Cardiff, Wales ready to grow their business and team. Today, Space Forge has more than 30 employees and expects to reach 45 by the end of the year. The driving force behind Space Forge is its innovative ForgeStar Platform, which operates a fleet of returnable satellites. One of Space Forge’s most distinct offerings is that everything they send up comes back down, while similar launch vehicles tend to leave material behind to burn up in space. In contrast, Space Forge ensures that your finished products, as well as your unused material, will return to Earth during a safe reentry and landing. The returnable satellites are uncrewed. The main reasons for the human-free satellites are safety and cleanliness. To remove potential contamination, all products are manufactured by robots. Additionally, Space Forge adheres to all regulations from the Civil Aviation Authority, which monitors aviation safety in the UK and determines policy for the use of airspace, including which materials are allowed to make the trip. With cleanliness and safety in place, Space Forge can embrace the other core benefits of manufacturing in space, including microgravity, ultra-high vacuum pressure, and near-absolute-zero temperatures — a trio of benefits that Bacon calls the “triple advantage of space.” For example, quantum devices such as optical sensors, are incredibly delicate mechanisms that greatly benefit from cryogenic conditions. As Wien’s displacement law states: An increase in temperature causes a decrease in wavelengths at which the peak amount of energy is radiated. This can disturb the sensor’s precision, so low temperatures are optimal and near-absolute-zero temperatures are ideal. Other instruments that benefit from space conditions include medical implant sensors that detect heartbeats and ultrasensitive compasses that let you know exactly where you are in the world instead of just indicating the direction of north. In materials manufacturing, superalloys benefit from space, too. Gravity and buoyancy go hand in hand. Unfortunately, here on Earth, buoyancy prevents perfect alloying in metals of different densities. In microgravity conditions, buoyancy is eliminated.

Manufacturing in Space

So, how does space manufacturing work for a huge piece of equipment? Well, it gets down to the nuts and bolts of it. Let’s look at a wind turbine blade. Sending entire blades to space one by one to manufacture could be quite cumbersome. However, the bolts that connect the parts of the blade actually undergo the most stress and are much smaller and easier to ship to space. By perfecting the bolts, you can increase the size of the blade. Likewise, for aircraft turbine blades, the superalloys that fasten the blade to the engine are equally important to the overall endurance of the blade. The same “less-is-more” concept is true for semiconductors in mobile connectivity. While it would be to expensive and time-consuming to ship up the semiconductors of every single cell phone, it’s not as extensive to consider a selection of semiconductors that are used in cell phone towers. In most instances, you don’t need a lot of product or material to make a significant impact. Of course, Space Forge envisions large-scale production in the future, but for now remains focused on the smaller steps with the most advancement. Trip time varies depending on the project, which is an uncommon luxury. The International Space Station, for example, typically requires years to get experiments to and from space. But through the ForgeStar Platform, trips can range anywhere from two weeks to six months. Biological research or pharmaceutical manufacturing typically require shorter trips, whereas semiconductor manufacturing or projects that involve vaccine research take longer periods of time. As Bacon explains it, Space Forge is all about embracing the trifecta of ideal conditions in space to create the “perfect manufacturing environment” while enabling lower-cost return flights, which are made possible using the predictive accuracy of Ansys software.

Ansys Validates Safer Re-entry

One of the most important factors in designing a re-entry vehicle, or returnable satellite, is accounting for the contrasting levels of speed and altitude within a short amount of time to maintain stability. Within an hour your vehicle drops from an altitude of approximately 400 kilometers, or about 250 miles, at a speed of Mach 25 — more than 19,000 miles per hour — to sea level at around 20 miles an hour. “You’re transitioning through a whole range of different speeds and altitudes and it’s really important that your vehicle is stable,” Bacons says. “We looked at which software could model anything from sea level up to hypersonic speeds and Ansys won that trade-off with its computational fluid dynamics (CFD) and Ansys Fluent in terms of what range it can simulate and what kind of geometry it can handle.” Combined with the engineering confidence that Ansys simulation supplies, Bacon and his team embrace additional benefits of the Ansys Startup Program, including cost-efficiency and technical assistance, which Space Forge received from Sheffield-based Ansys experts, EDRMedeso.
ajax-loader-image